
J .  F h i d  Mech. (1989), vol. 207, p p .  311-321 

Printed in  Great Britain 

31 1 

Experimental investigation of convective stability in 
a superposed fluid and porous layer when heated 

from below 

By FALIN CHENT A N D  C. F. CHEN 
Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, 

AZ 85721, USA 

(Received 8 August 1987 and in revised form 15 March 1989) 

Experiments have been carried out in a horizontal superposed fluid and porous layer 
contained in a test box 24 cm x 12 cm x 4 cm high. The porous layer consisted of 3 mm 
diameter glass beads, and the fluids used were yater, 60 Yo and 90 % glycerin-water 
solutions, and 100 YO glycerin. The depth ratio d ,  which is the ratio of the thickness 
of the fluid layer to that of the porous layer, varied fro? 0 to 1.0. Fluids of 
increasingly higher viscosity were used for cases with larger d in order to keep the 
temperature difference across the tank within reasonable limits. The top and bottom 
walls were kept at different constant temperatures. Onset of convection was detected 
by a change of slope in the heat flux curve. The size of the convection cells was 
inferred from temperature measurements made with embedded thermocouples and 
from temperature distributions a t  the top of the layer by use of liquid crystal film. 
The experimental resuks showed (i) a precipitous decrease in the critical Rayleigh 
number as the depth of the fluid layer was inqeased from zero, and (ii) an eightfold 
decrease in the critical wavelength between d = 0.1 and 0.2. Both of these results 
were predicted by the linear stability theory reported earlier (Chen & Chen 1988). 

1. Introduction 
In an earlier publication (Chen & Chen 1988), we studied the onset of salt-finger 

convection in a superposed fluid and porous layer by linear stability theory. The 
motion in the fluid layer was governed by the Navier-Stokes equation, and the 
motion of the fluid in the porous layer was governed by the Darcy equation. Because 
of the differences in the order of the differential equations involved, a velocity slip 
condition proposed by Beavers & Joseph (1967) was applied a t  the interface. It was 
further assumed that the motion was two-dimensional and the layers were of infinite 
horizontal extent. In  order to  check the method of analysis and the associated 
computational program, we first calculated the onset of conditions for a pure thermal 
convection case and compared our results with those of ,Sun (1973). 

For the thermal convection case a t  a given depth ratio d (the ratio of the fluid layer 
depth to porous layer depth), the critical conditions are determined by three other 
parameters: the Darcy number 6, the ratio of thermal diffusivities eT,  and the 
accommodation coefficient h a t  the interface. The Darcy number 6 =  
Kid;1, where K is the permeability and d ,  the layer thickness of the porous medium. 
The thermal diffusivity ratio eT = K ~ / K * ,  in which K~ is the thermal diffusivity of the 
fluid and K* is the thermal diffusivity of the porous medium defined as the ratio of 
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Depth ratio 

FIQURE 1. Variation of the critical Raleigh number with depth ratio. The solid line is for 6 =  
1.77 x and eT = 0.7 appropriate for a water-saturated porous layer of 4 cm thickness; the 
dotted line is for 6 = 3.53 x and eT = 0.4 appropriate for a glycerin-saturated porous layer of 
2 cm thickness. The experimental points are gvaluated a t  a reference temperature equal to the 
interface temperature. Horizontal and vertical lines indicate possible errors. 

the thermal conductivity of the porous medium to the heat capacity per unit volume 
of the fluid ( P C ) ~ .  The thermal conductivity of the medium K,  is given by 

k, =ek,+(l-e)k,, 

where k, is the thermal conductivity of the glass. 
Using the same values of 6 ( = 0.002), eT ( = 0.7),  and & ( = 0.1) as those used by Sun 

(1973), our results, for both the critical Raleigh number an$ the critical yavenumber, 
agreed very well with Sun’s results up to a depth ratio d of 0.1, For d = 0.11, the 
critical wavenumber calculated by u s  was almost ten times larger than that 
calculated by Sun. Further investigation showed that the marginal stability curve 
was bimodal and, a t  approximately d = 0.105, the critical mode shifted from the 
long-wavelength branch to the short-wavelength branch. Physically, when the depth 
ratio is smal1,d < 0.1, the instability was dominated by the porous layer. When the 
depth ratio d > 0.1, the fluid layer was of sufficient depth to become the more 
unstable of the two layers, and it became the dominant layer for instability. 

The variations of the critical Rayleigh number and wavenumber as functions of 
the depth ratio are presented in figures 1 and 2. Two theoretical lines are shown : the 
solid line is for S = 1.77 x lop3, cT = 0.7, and & = 0.1, and the dotted line is for 6 = 

3.53 x lop3, cT = 0.4, and Oi = 0.1. The former represents a 4 cm thick porous layer of 
3 mm diameter glass beads saturated with water, and the latter represents a 2 ern 
thick layer of similar beads saturated with 100% glycerin. We note here that we 
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FIGURE 2. Variation of the critical wavenumber with depth ratio. For the parameters used to 
calculate the solid and the dotted lines, see figure 1. The experimental points are obtained by 
temperature distributions (squares) and liquid crystal film (circles). 

have varied the accommodation coefficient & from 0.1 to  4.0 with no noticeable effect 
on the final result. The Rayleigh number R,  is defined for the porous layer as 

gaAT, Kd, R, = 
VK* ' 

in which g is the gravitational constant, a the volumetric expansion coefficient, AT, 
the temperature difference across the porous layer, K the permeability, d, the 
thickness across the porous layer, v the kinematic viscosity of the saturating fluid, 
and K* the thermal diffusivity of the porous layer defined earlier. The temperature 
difference across the porous layer can be related to the temperature difference across 
the combined layer AT when the system is in the conduction mode prior to the onset 
of instabilities, 

AT, = AT(&) ET+d -l . 

In  figure 1, we show the rapid decrease of the Rayleigh number R, with in2reasing 
depth ratio d .  The abrupt change in the rate of decrease of the Rayleigh a t  d x 0.13 
is due to  the sudden shift of critical condition from the long-wavelength branch to 
the short-wavelength branch. The sudden increase of the critical wavenumber at the 
critical depth ratio is shown in figure 2. 

Sun (1973) carried out a comprehensive study of convective stability in a two-layer 
system, including a stability analysis and an experimental investigation. The 
experiments were conducted in a circular tank 29 cm in diameter and 8 cm in depth. 
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The solid matrix consisted of glass spheres 6 mm in diameter, and the saturating fluid 
was water. He found good agreement between the experimentally obtaiPed critical 
Rayleigh number and the theoretically predicted ones a t  depth ratios d of 0.0609, 
0.109, and 0.21 1. The experimental confirmation of his predictions at (i = 0.211 is in 
direct conflict with our linear stability results (Chen & Chen 1988) which predict a 
critical Rayleigh number one-third the value found by Sun and a critical wavenumber 
approximately ten times as large as that  found by Sun. From the experimental data 
presented in table”5.4 of his thesis (Sun 1973), the critical temperature difference 
across the tank at  d = 0.211 is approximately 0.5 “C. Such small critical temperature 
differences could present difficulties in controlling the experiment and obtaining the 
necessary accuracy for the data. It is important to devise a set of experiments such 
that (i) the critical temperature difference would be of sufficient magnitude to 
eliminate such difficulties, and (ii) the convection pattern a t  the supercritical statve 
can be determined since the heat transfer characteristics a t  supercritical conditions 
will be crucially dependent on the convection pattern. Results from this set of 
experiments can then be used to judge the validity of our linear stability analysis. We 
have recently carried out such a series of experiments in a rectangular test tank with 
six different depth ratios ranging from 0 to 1.0. The experimental results were in 
general agreement with the theoTetical predictions, including the drastic change in 
the critical wavelength between d = 0.10 and 0.20. 

2. Experimental apparatus and procedure 
The experiments were performed in the box used by Murray & Chen (1989) to 

investigate the onset of double-diffusive convection in a porous layer. The box had 
inside dimensions of 24 cm long x 12 cm wide x 4 em high. The sidewalls of the box 
were made of glass, and the top and bottom constant-temperature walls were made 
of brass. The top wall, which was removable, was provided with passages through 
which the water from a constant-temperature bath could circulate. The bottom wall 
was of sandwich construction consisting of an upper plate made of brass and a lower 
plate made of aluminium, in which water passages were provided. Sandwiched in 
between these two plates was an RdF Microfoil heat flux sensor with dimensions of 
4 cm x 15 cm. This sensor was located a t  the centre of the aluminium plate, from 
which sufficient material was removed to accommodate the sensor. In  order to ensure 
good thermal contact between the aluminium plate, the heat flux sensor, and the 
brass plate, Dow Corning Silicone heatsink compound was embedded in the top and 
bottom walls near the inside surfaces a t  the centre and a t  the periphery of each wall. 
The box was insulated on all sides and both walls with Styrofoam. Water a t  different 
temperatures was supplied by two separate constant-temperature baths. The heat 
flux sensor was calibrated by filling the box with glycerin and imposing a stable 
temperature difference using the heat conductivity values given by Segur (1953). 

The solid matrix consisted of glass beads with a nominal diameter of 3 mm. The 
permeability K of such a porous medium was obtained by using the Kozeny-Carmen 
relation (Combarnous & Bories 1975) 

d2 2 
(3) K = 1 - - . . . -  

1 7 2 . 8 ( 1 - ~ ) ~ ’  

in which d, is the diameter of the glass beats and E the porosity. Experiments were 
performed with six different depth ratios (d = 0, 0.25, 0.1, 0.2, 0.5, and 1.0): three 
below and three above the critical depth ratio. These experiments were conducted in 
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the test tank with a fixed height of 4 cm. The depth of the porous layer d ,  must vary 
according to$, = 4/( 1 + d ) ,  which in the present experiments varied from 4 cm to 2 
cm. For the d = 0.025 case, special provision were made to support the top constant- 
temperature wall 1 mm above the porous layer of 4 cm in depth. When filling the 
tank with fluid-saturated porous medium, it was important to avoid trapping air 
bubbles among the glass beads, especially for fluids more viscous than water. We first 
immersed the glass beads in a beaker which was filled with saturating fluid. Then, the 
wetted beads were ladled with a spoon into the test tank. When the fluid is very 
viscous, such as pure glycerin, extra care must be taken since any sudden motion of 
the spoon would generate a number of air bubbles, which would persist in the fluid 
for a long time. After the glass beads were packed to the desired height, additional 
fluid was added to fill the tank to 4 cm in depth. The top constant-temperature plate 
was then carefully placed on top of the fluid layer, resting on Plexiglas stays placed 
a t  the two ends of the tank. Care was taken not to trap any air bubbles between the 
fluid surface and the top wall. 

In order to keep the overall temperature difference across the test tank within 
reasonable limits so that it is not too small to be determined accurately, and a t  the 
same time not too large to incur sizeable property variations, fluids of higher 
viscosity were used as the depth ratio was increased. Four different fluids were used : 
water for d = 0, 0.025, and 0.1; 60% glycerin-water solytion for d = 0.2; 90% 
glycerin-water solution for d = 0.5; and 100% glycerin for d = 1.0. For these fluids, 
the diffusivity ratio cT varied from 0.4 (glycerin) to 0.7 (water). 

The size of the convection cells was determined by three different methods. In the 
first method, it was inferred from the temperature distributions measured both in the 
longitudinal and transverse directions. Temperatures a t  selected locations a t  a 
horizontal plane 2 cm above the bottom of the tank were measured by thermocouples 
which were fixed onto a grid. The grid was made of a Plexiglas frame spanning the 
inside of the box with two slightly stretched nylon lines, one of the longitudinal 
direction and the other in the transverse direction. Thermocouples made of 36-gauge 
copper and constantan wires were attached onto the nylon wires; 14 of these were in 
the longitudinal direction and 6 were in the transverse direction. The distances 
between the thermocouples were adjustable to accommodate the disparate 
wavelengths anticipated from the stability analysis. The thermocouple output was 
converted into temperatuTes by a Fluke Datalogger. 

For experiments with d 2 0.2 in which the fluids were glycerin-water solutions, 
convection patterns in the fluid layer at  supercritical states may be detected 
by shadowgraphs. This is because the rate of change of the index of refraction 
with respect to temperature for glycerin is approximately three times as large as 
that for water. At 15 "C, the respective values are 2.25 x lop4 OC-l (Segur 1953) and 
0.7 x O C - l  (Weast 1975). In these cases, the wavelengths obtained from tem- 
perature measurements were compared with those obtained by shadowgraph. 

The third method involved the use of a liquid crystal film. It became evident from 
the temperature readings early in our investigation that the convection pattern was 
three-dimensional. In order to visualize the pattern over the entire tank, we chose 
the technique using a liquid crystal film. The film was glued to a Plexiglas sheet 1.58 
cm (& in.) thick, which was of the same size as the top cooling plate. The temperature 
range of the film was from 25 "C (orange in colour) to 30 "C (blue in colour). 
Intermediate temperatures appeared in shades of yellow and green. At the desired 
condition when the convection cells were fully developed, the cooling plate was 
removed, and the sheet with the liquid crystal film was carefully placed on top of the 
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fluid layer so as not to trap any air bubbles under the sheet. With practice, the entire 
operation could be completed in less than two minutes. The colour pattern in the 
liquid crystal film would slowly emerge, and it wa,s recorded by a camera mounted 
vertically above the t;? Ilk. 

Each experiment was started by increasing the temperature of the bottom wall by 
a predetermined amount and, a t  the same time, decreasing the temperature of the 
top wall by the same amount. In  this manner, the mean temperature was maintained 
close to room temperature. The diffusion time based on a 2 cm layer of 100 % glycerin 
was 2200 s. The temperature difference across the tank was adjusted every 2 hours. 
The voltage output of the heat flux meter and temperatures at selected points were 
recorded every minute ; these readings indicated that the equilibrium was generally 
established within 40 minutes. The temperature difference across the tank was slowly 
increased to approximately 20 "C in five or six steps. The same experiment with the 
same packing of glass beads was repeated a number of times so that there would be 
a good coverage of data points within the temperature difference range. A total of 39 
experiments were performed. 

3. Experimental results 
3.1. Critical Rayleigh number 

For data evaluation, the porosity of the porous medium must be measured in situ. 
This is particularly important for this set of experiments because the glass beads 
must be packed carefully in o?der to present a nearly flat interface. A photo showing 
the experimental set-up for d = 1.0 is presented in figure 3. It can be seen that the 
glass beads are packed in a number of horizontal rows with hardly any defect. The 
measured values of porosity E obtained by slowly filling four different packings of the 
glass beads with water ranged from 0.341 to 0.350, with an average of 0.345, which 
was taken as the porosity of the medium. It is noted there that a random packing of 
glass beads usually yields an E of 0.390. Both values are well within the theoretical 
range of 0.259 to 0.875 given by Scheidegger (1974). 

To check the experimental system, we ran a set of experiments for 2 = 0, a 4 cm 
thick layer of water-saturated glass beads. The heat flux curve is shown in figure 4, 
with a critical AT of 15.2"C. The physical properties are evaluated at  the mean 
temperature of 24 "C using the correlation given by Burretta (1972) for water. The 
critical Rayleigh number is found to be 40.07, as shown in figure 5, which is in 
excellent agreement with the theoretical value of 4x2 given by Lapwood (1948) and 
the experimental results of Combarnous & LeFur (1969), Elder (1967), Katto & 
Masuoka (1967), and Burretta (1972). 

The same procedure was followed to  determine the critical AT for d = 0.025 to 1 .O. 
When converting these critical AT to Rayleigh numbers, a question arises as to what 
temperature to use for the evaluation of the phy2ical properties. Since the domin5ting 
convection occurs in the porous layer at small d and in the fluid layer at large d,  we 
calculated the Rayleigh numbers based on the physical properties a t  three different 
temperatures: Tmp, the mean temperature of the porous layer; Tmf, the mean 
temperature of the fluid layer; and T,, the temperature a t  the interface. These 
Rayleigh numbers, together with the theoretical value predicted by the linear 
stability theory, are shown in table 1. It can be seen that the Rayleigh numbers 
evaluated a t  T,, the interface temperature, give the least relative error with respect 
to the predicted value. This set of critical Rayleigh numbers is shown in figure 1 in 
comparison with the theoretical curve. The agreement is quite good. Error bars are 
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FIGURE 3. Experimental set-up for d = 1.0 case with 100% glycerin. The glass beads are 
packed carefully in regular horizontal rows to obtain a smooth, flat interface. 

0 5 10 15 20 25 30 
Temperature difference (“C) 

FIGURE 4. Experimental heat flux curve for a 4 cm thick porous layer. Different symbols 
denote different sets of experiments with the same packing of glass beads. 

11-2 
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FIGURE 5 .  Nusselt-number results for the porous layer. 

R m ,  exp (T,, "C) 

d d, (cm) AT,,,, ("C) TrnP T, 
0 4.0 15.2 40.07 (24) - 
0.025 4.0 13.8 36.80 (25) 31.82 (18) 
0.1 3.64 12.8 25.40 (23) 17.57 (18) 

0.15 2.67 12.8 0.190 (27.5) 0.159 (25) 
1 .o 2.00 11.7 0.0145 (28) 0.0124 (26) 

0.2 3.33 11.6 4.71 (26) 3.95 (22) 

Tm, R m 3  Th 
39.46 

31.82 (18) 33.22 
17.57 (18) 21.26 
3.65 (20) 2.71 

0.0093 (22.5) 0.0139 

- 

O.llO(20) 0.120 

TABLE 1 .  Experimental values for the critical Rayleigh number 

Fluid 

I Water 

60 Yo 
Glycerin 

90 Yo 
Glycerin 

100 %I 

Glycerin 

Ter p x lo3 C, x 10 v x a x  k, K,  x k* x lo-' 
2 "C kg/m3 10 J/kg°C m2/s "C-' W/m°C mz/s m2/s eT 

0 24 0.997 4.16 0.919 2.48 0.602 0.145 0.201 0.720 
0'025} 18 0.999 4.17 1.06 1.85 0.594 0.143 0.200 0.713 
0.1 
0.2 22 1.155 3.10 8.60 5.45 0.379 0.106 0.212 0.50 

0.5 25 1.236 2.559 125.4 6.15 0.300 0.094 0.229 0.410 

1.0 26 1.262 2.41 673.5 6.10 0.284 0.093 0.239 0.389 

TABLE 2. Summary of fluid properties 

shown for each data point. The horizontal bar indicates the possible error resulting 
from the uncertainties in the measurement of the depth of the two layers. The 
vertical bar indicates the uncertainties in the Rayleigh-number determination. The 
major source is due to the uncertainty of the critical temperature difference. The 
physical properties of the fluid evaluated at are summarized in table 2. 



Convective stability in. a superposed JEuid and porous layer 319 

7 

5 

3 
u6 v 

2 1  

3 - 1  

3 - 5  

e 

n 

* 

* 
9 - 3  

-1 
- 10.5 -1.5 -4.5 - 1.5 1.5 4.5 1.5 

X (cm) 

t 
x (cm) Y (cm) 

FIGURE 6. Temperature distributions in th: porous layer: z denotes the longitudinal4 direction 
and y denotes the lateral direction. (a) d = 0.1 at AT = 21.2 O C  = 1.54Aqrit: ( b )  d = 0.2 at 
AT = 33.5 "C = 2.89Aqr,. 

3.2. Critical wavelength 

Temperature distrinbutions in the longitudinal directions for the cases of d = 0.1 a t  
AT = 21.2 "C and d = 0.2 a t  AT = 33.5 "C are shownAin figures 6 ( a )  and 6(b) .  The 
temperature distribution in the lateral direction for d = 0.2 is also shown in figure 
6(b ) .  It should be noted that these two graphs have the same lengthscale to 
emphasize the abrupt decrease in the critical wavelength. An upward motion of the 
fluid would induce a relatively higher temperature reading, whereas aAdownward 
motion of the fluid would induce a relatively lower temperature. For d = 0.1, the 
wavelength of the convection cells obtained by measuring the distance either 
between theAmaxima or the minima of the longitudinal temperature distribution was 
9 cm. For d = 0.2, there were four minima and three maxima, and the average 
wavelength obtained was 1.1 cm, an eightfold decrease for a slight increase in the 
fluid layer thickness. We have shown the temperature distributions a t  supercritical 
states so that the structure of the convection cells is clearly discernible. These fully 
developed cells could be traced to those starting cells a t  temperature differences 
slightly larger than the critical value, and the wavelengths of these cells were 
approximately equal. 

The temperature distribution in the lateral direction for 2 = 0.2 indicated that the 
convection pattern y a s  three-dimensional. This was true for every depth ratio except 
0. In  some cases a t  d = 0 the convection pattern was two-dimensional, as shown in 
flow visualization pictures made by Murray (1986). However, there were instances in 
which the pattern was three-dimepional. For d > 0, the convection pattern was 
invariably three-dimensional. For d = 0.2, the fluid used was a 60% glycerin-water 
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Temperature 
2 Theory distribution Liquid crystal Shadowgraph 

8.0 9.25 (5) 7.3 (6)  - 0 ('7) 
0.025 (50) 9.56 9.65 (5) 
0.1 (14) 10.60 9.9 (5) 1 1 .o (20) - 

0.2 (7)  1.75 1 . 1  (14) 1.58 (15) 1.34 (25) 
0.5 (4) 3.03 3.7 (14) 3.13 (20) 3.38 (20) 
1.0 (4) 4.46 5.58 (9) 4.79 (18) 4.64 ( 1  7 )  

TABLE 3. Experimental values of the critical wavelength (cm) with estimated percentage errors 
(given in parentheses) 

- - 

solution, and we were able to obtain shadowgraphs, with faint shadows showing a 
few of the convection cells a t  AT = 35.5 "C. The wavelength was estimated to be 1.5 
cm, as compared to  the value of 1.1 cm obtained from the temperature distribution. 
Wavelengths of convection cells at 2 = 0.5 and 1.0 were similarly determined from 
the temperature distributions obtained from the experiment. 

The convection patterns as revealed by the liquid cry;tal film are shown in figures 
7,  8 and 9 (plates 1, 2 ,  and 3). In  figure 7,  patterns for d = 0 and 0.1 are shown. The 
temperature differences across the tank just prior to these photos being taken are 
given in the figure caption; :hey range between 1.5 and 3.0 times the critical 
temperature difference. For d = 0, there were three prominent upward plumes 
showing in blue. The downward plumes in orange were distributed around the edge 
of each cell. A t  2 = 0.1, the convection cell was noticeably larger than in the previous 
case. When the depth ratio was increased to  0.2, figure 8, the convection cells became 
much smaller and they were distributed more or less evenly in the central portion of 
the tank. As 2 was further increased, the convection cell became larger since the 
convection motion was essentially confined within the upper fluit layer. For 2 = 0.5 
(figure 8), the cells were regularly spaced in the tank. For both d = 0.2 and 0.5, the 
temperature differences between the hot and cold" plumes were less than 5 O C ,  

resulting in a colour range from yellow to blue. For d = 1.0, we present in figure 9 a 
liquid crystal pattern and a shadowgraph, taken at approximately the same time. 
The convection cells continued to increase in size. It can be seen that the 
shadowgraph shows overlapping cellular structure since the light path traversed 
through the entire width of the tank. 

Estimates of wavelengths from these flow patterns arc listed and compared to 
those predicted by theory and obtained by other measurement techniques in table 3 
and the data points shown in figure 2.  Even though the linear stability analysis was 
done for a two-dimensional flow pattern, there is some degree of agreement between 
the theoretical and the experimental values. 

4. Conclusions 
(a) The precipitous decrease of the critical. Rayleigh number R, as the thickness 

of the overlying fluid layer increases from zero as predicted by the linear stability 
theory was confirmed by experiment,al results. 

( b )  The sudden decrease in the critical wavelength between 2 = 0.1 and 0.2 as 
predicted by the linear theory was confirmed by temperature measurements and by 
the pattern exhibited in the liquid crystal film. 
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FIGURE 7. Liquid crystal film fixed to a transparent wall showing convection patterns for d=O (top) and d=O.l 
(bottom). Blue signifiFs 30°C and orange 25°C. The convection cells are. three-dimensional, and they 
increase in size from d=O to 0.1. The picture was taken at 1.46 ATcrit for d=O and 1.59 ATc,it for d=O.l. 

CHEN & CHEN (Facing p. 320) 
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FIGURE 8. Convection patterns for d=0.2 (top) at 3.0 ATcri, and d=0.5 (bottom) at 1.33 ATcrit. Note tkie 
dramatic decrease in the wavelength from d=O.l (figure 7) to d=0.2. 

CHEN & CHEN 
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FIGURE 9. Convection pattern (top) for d=l.O at 1.98 ATcrit and shadowgraph (bottom) taken at approximately 
the same time. Since the shadowgraph integrates the flow structure through the entire width of the tank, one 
can discern the three-dimensional effect. 

CHEN & CHEN 
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( c )  I t  was found that the convection cells were generally three-dimensional. 
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